Medieval Forewarning of the 2004 Indian Ocean Tsunami in Thailand

Kruawun Jankaew, Brian F. Atwater, Yuki Sawai, Montri Choowong, Thasinee Charoentitirat, Maria E. Martin & Army Prendergast

Nature, Vol 455| 30 Oct. 2008| 1228-1231

Contents

Abstract Background of 2004 Indian Ocean Tsunami Stratigraphy & Chronology analysis Result

Abstract

- Recent centuries provide no precedent for the 2004 Indian Ocean tsunami, either on the coasts it devastated or within its source area.
- Using sedimentary evidence for tsunamis, they identify probable precedents for the 2004 tsunami at a grassy beach-ridge plain 125 km north of Phuket.
- The 2004 tsunami, running 2 km across this plain, coated the ridges and intervening swales with a sheet of sand commonly 5–20 cm thick.
- The peaty soils of two marshy swales preserve the remains of several earlier sand sheets less than 2,800 years old.
- If responsible for the youngest of these pre-2004 sand sheets, the most recent full-size predecessor to the 2004 tsunami occurred about 550–700 years ago.

Background

- The term tsunami comes from the Japanese meaning harbor (''tsu'', 津) and wave (''nami'', 波).
- A tsunami is a series of waves created when a body of water, such as an ocean, is rapidly displaced.
- Due to the immense volumes of water and energy involved, the effects of a tsunami can be devastating.

•The potential to generate a tsunami:

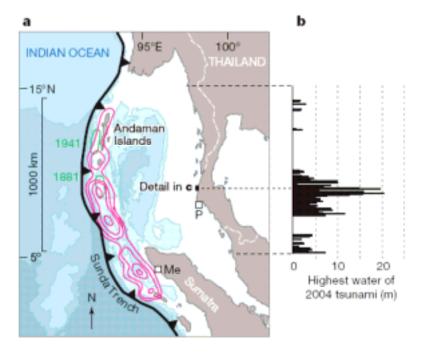
> Earthquakes

Mass movements above or below water

Some volcanic eruptions

> Underwater explosions, landslides

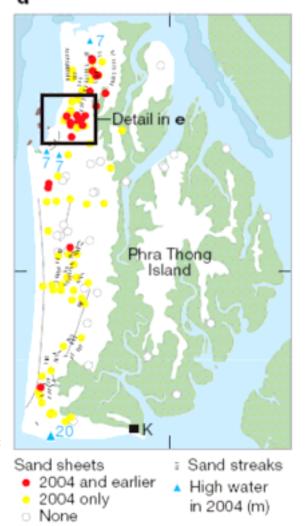
> Underwater earthquakes

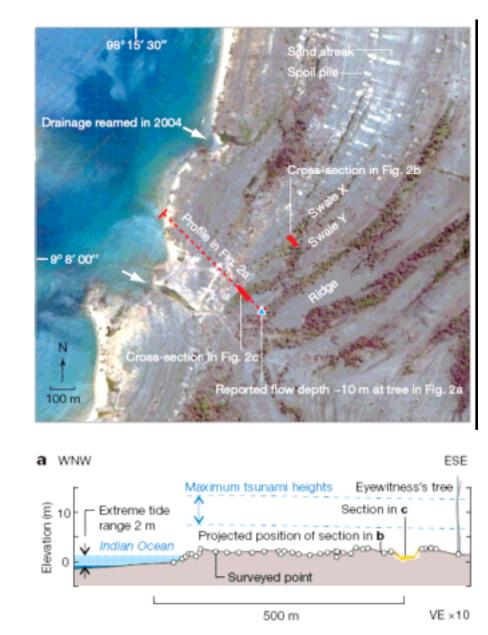

Large asteroid impacts

> Detonation of nuclear weapons at sea

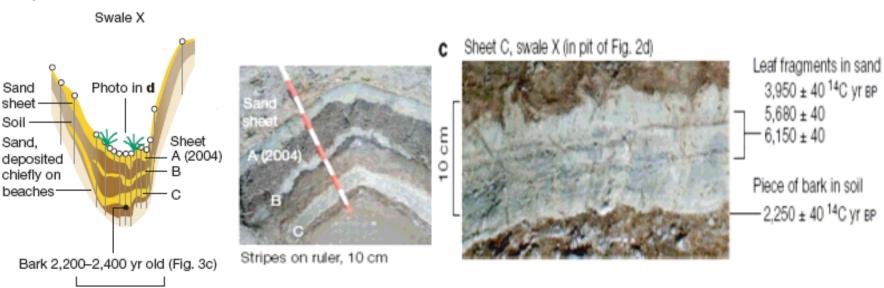
•The 2004 Indian Ocean tsunami:

- >Associated with an earthquake of magnitude 9.2
- > Resulted from a fault rupture 1,500km long that expended centuries' worth of plate convergence.
- Claimed nearly all of its victims on shores that had gone 200 years or more without a tsunami disaster.
- The earthquake defied a Sumatra–Andaman catalogue that contains no nineteenth-century or twentieth-century earthquake larger than magnitude 7.9

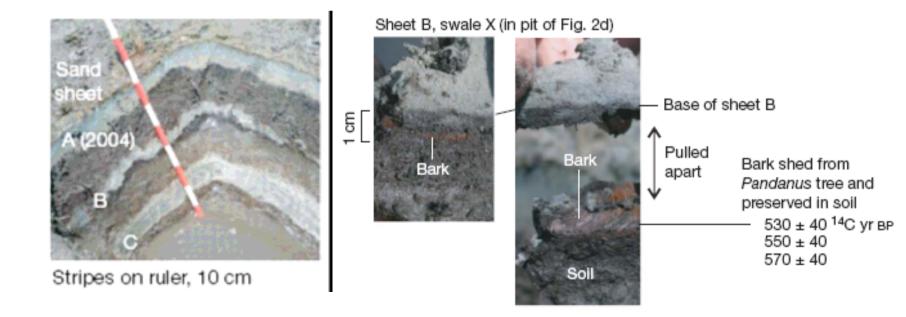

Rose 20m above sea level on Phra Thong Island
Coated most of the island's western half with a sheet of sand
Ran more than 2km inland across a Holocene plain


Stratigraphy & Chronology analysis

- Digged more than 150 sites of pits and augering holes into ridges and swales to seek pre-2004 sand sheets at Phra Thong.
- Found 20 sites content pre-2004 sand interbedded with the peaty soils of swales that hold standing water most of the year
- Didn't find pre-2004 sand beds in the quartzsand soils of the ridges or in the slightly organic soils of swales that are merely damp.

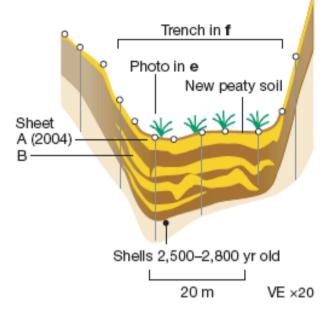

Traced pre-2004 beds across each of two marshy swales near a place where the 2004 tsunami flowed about 10m.

- These swales formed about 2,500 years ago.
- The more westerly of the swales (X) postdates its neighbour (Y).
- Assembled stratigraphic cross-sections from correlated pits, auger borings and a trench.



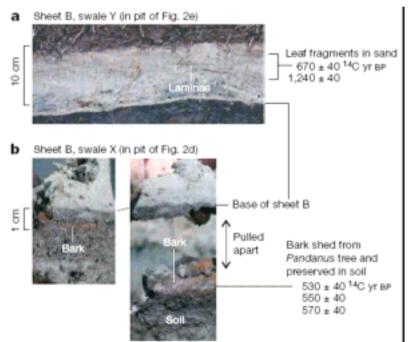
Swale X

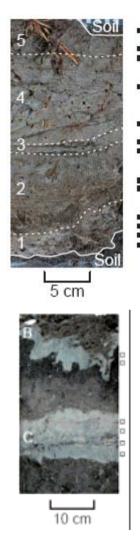
- **Sheet C** is commonly 10 cm thick
- **Coarse to very coarse sand** forms a discontinuous basal layer
- The rest of sheet C consists of very fine sand and coarse silt that contains horizontal leaf fragments
- > The entire sheet formed after 2,200–2,400 years ago
- Leaf fragments ages exceed the bark age by thousands of years

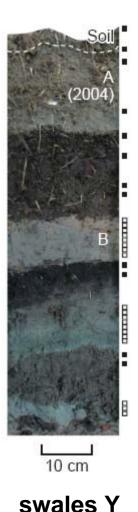

- Sheet B, commonly 5 cm thick, typically fines upwards from fine sand to sandy silt
- It conformably overlies peaty soil that contains a horizon of bark fragments in its uppermost 1 cm
- > Three fragments yielded ages between 530 ± 40 and 570 ± 40
- > Sheet B was deposited about 550–700 years ago

Swale Y

•Swale Y


- **> Three** pre-2004 sand sheets
- > All are similar in thickness to 2004
- > All were formed after 2,500–2,800 years ago marked by shells
- The lowest two sheets, otherwise undated and thus left uncorrelated with swale X, consist very fine to fine sand
- They lack sedimentary structures, probably because of bioturbation that blurs their contacts with the soils beneath.


- The highest pre-2004 sheet (B) retains a sharp base and tabular shape that extend the full length of the trench .
 This sheet fines upwards from basal fine or medium sand to parallel-laminated very fine sand that abounds in leaf fragments .
- It probably correlates with sheet B of swale X
 - each is the youngest pre-2004 sand sheet in its swale
 - the leaf fragments in swale
 Y yielded ages too young
 for correlation with sheet C


diatom sediment

- Although the 2004 sand sheet abounds in brackish and marine diatoms, the earlier sand sheets in swales X and Y lack diatoms of any kind
- Marine and brackish-water diatoms aid in identifying tsunami deposits on temperate shores
- Perhaps their opaline silica valves do not last long in tropical warmth; in experiments, the dissolution of diatoms increases with temperature

Diatoms Present

Absent

swales X

Preservation is also a problem for the sand sheets:

- **>**The pre-2004 sheets:
 - distinct and sharply bounded where the swale soil is peaty
 - blurred by gradational contacts where the soil is just slightly organic
 - totally absent in the sandy soils of beach-ridge crests

> The 2004 tsunami deposit is already headed towards this fate:

- in wet swales it has a protective cap of organic matter as much as 5 cm thick
- on ridge crests it lacks any cover other than ejecta from burrows that tap the underlying sandy soil.

•The source of pre-2004 sand sheets

- Although sand sheets can record intense storms, the geographic setting (less than 10 ° from the Equator) limits Phra Thong's exposure to such storms.
- Scores of twentieth-century cyclones originated in Indian Ocean waters to its west, but all these moved towards India, Bangladesh or Myanmar without producing a known storm surge in Thailand.
- Tropical cyclones do strike Thailand from its Pacific side. However, such a storm loses strength during its overland crossing to the Indian Ocean

- > Phra Thong's setting also disfavours sand-sheet deposition by river or wind.
- Tidal inlets separate the island from the nearest rivers.
- > Aeolian dunes obscure little, if any, of the island's delicate striping by beach ridges and swales.

- Chronology provides three further reasons to ascribe the pre-2004 sand sheets to tsunamis:
 - First, the middle Holocene ages of the leaf fragments from sheet C imply scour into long-buried deposits beneath tidal inlets.
 - The 2004 tsunami showed capacity for such scour by knocking down mangroves along an inner part of the inlet that bounds Phra Thong Island on the south.

Second, the sand sheets represent infrequent events:

- The soil between sheets C and B spans 1,500–1,850 years
- The interval between sheet B and the 2004 tsunami lasted nearly 550–700 years
- These time intervals are in the broad range of deductive estimates for the recurrence of giant earthquakes in the Sumatra–Andaman source region of the 2004 tsunami.

- Third, sheet B, if little younger than AD 1300–1450, may correlate with tsunami and earthquake evidence elsewhere.
 - The youngest widespread pre-2004 sand sheet on a beachridge plain at Meulaboh, Sumatra overlies plant detritus dated to AD 1290–1400.
 - Two coral fragments on a marine terrace in the Andaman Islands gave ages in the range AD 1200–1650.
 - However, in accounts from Ibn Battuta (journey, AD 1325– 1354) and the great Ming armadas (voyages, AD 1405– 1433), there was no written evidence for a sheet-B tsunami on Sumatran and SriLankan shores that the 2004 tsunami would overrun.

- What tsunami sources might Phra Thong's pre-2004 sand sheets represent?
 - Too little is known about the sheets' landward extent on the island, let alone their potential correlates on other Indian Ocean shores, to require full-size predecessors to the 2004 Sumatra–Andaman earthquake.
 - The sheets probably required ruptures larger than that of 1881, which crested less than 1 m high
 - The pre-2004 sheets may also require Sunda Trench earthquakes larger than magnitude 8.5

Result: Sand sheets of Phra Thong Island thus forewarn of infrequent catastrophe.

- They are already providing public officials and coastal residents with tangible evidence that the 2004 tsunami was not the first of its kind.
- Tsunamis without precedent in written history may threaten Indian Ocean shores that face other parts of the Sunda Trench and the Makran subduction zone.

- It can be hoped that natural warnings from recent geological history will help avert surprises from these additional tsunami sources.
- Still to be determined:
 - Whether centuries dependably separate such outsize tsunamis of Sumatra–Andaman source
 - Whether these recur often enough to dominate Thailand's probabilistic tsunami hazard.

THANK YOU!